MP2I - 2025/2026 Informatique - TD n°11 - Piles et files 1/2

TD n°l1l - Piles et files

Exercice 1 Applications des piles

Dans cet exercice on suppose écrite en C un type structure pile, représentant une pile d’entiers mutable. On
dispose des fonctions pilex creer(), bool est_vide(pilex p), int depile(pilex p), void empile(pilex p, int e),
void detruire(pilex p) qui fonctionnent avec effets de bord.

1. Ecrire une fonction void echange_deux_premiers(piles p) qui échange les deux premiers éléments d’une pile.

2. Ecrire une fonction void nieme(pilex p, int n) qui dépile et affiche le n-ieme élément. Le reste de la pile doit
rester le méme. A quoi faut-il penser en terme de programmation défensive ?

3. Ecrire une fonction void premier_en_dernier(pilex p) qui prend en entrée un pile et modifie la pile pour que
le premier élément devienne le dernier, mais les autres restent dans le méme ordre.

4. Ecrire une fonction void renverse(pilex p) qui prend en entrée une pile et renverse 'ordre des éléments dans
la pile

5. Ecrire une fonction pilex decoupe(pilex p) qui prend en entrée une pile et la découpe en deux. La premiere

moitié sera renvoyée dans une autre pile (les éléments seront dans le méme ordre qu’ils étaient a I'origine) et
I’autre moitié sera mise dans la pile d’origine.

6. Ecrire une fonction pilex melange(pilex pl, pilex p2) qui prend en entrée deux piles et les "mélange" aléa-

toirement. On suppose qu'on dispose d’'une fonction int zero_ou_un() qui renvoie aléatoirement O ou 1 avec
probabilités égales.
La notion de mélange est la suivante : si x est dans la pile 1 et y est aussi dans la pile 1 et que x est plus proche
de la téte que v, alors dans le mélange on doit toujours avoir x plus proche de la téte que y. De la méme maniére,
Pordre relatif des éléments dans la pile 2 doit étre préservé. En revanche si x est dans pile 1 et y dans pile 2 on
n’impose rien sur leur ordre dans le mélange.

Exercice 2 Nombres de Hamming et file

Les nombres de Hamming sont les nombres de la forme 203b5¢ pour a, b, c entiers naturels quelconques. Les premiers
entiers de Hamming sont 1,2,3,4,5,6,8,9,10,12,15,16,18,20,...

Le but de cet exercice est de générer la liste des n premiers nombres de Hamming. L’apporche naive consiste a
parcourir les entiers en vérifiant s’ils sont des nombres de Hamming, jusqu’a en avoir trouvé n.

1. Ecrire une fonction est_hamming : int->bool qui vérifie si un entier est un nombre de Hamming.

2. Ecrire une fonction hamming_naif : int->int list qui prend en entrée n est renvoie la liste des n premiers
nombres de Hamming.

Si cette approche fonctionne bien pour les premiers termes, plus n grandit et plus les nombres de Hamming sont
éloignés les uns des autres (par exemple le 1999¢ est 8 100 000 000 et le 2000e 8 153 726 976). 11 devient donc trop
coliteux d’explorer tous les entiers pour trouver les nombres de Hamming.

On va plutét générer les nombres de Hamming a partir d’autres nombres de Hamming. On utilise pour ce faire
trois files f3, f3 et f5, qui initialement contiennent le nombre 1 et on leur applique I'algorithme suivant, jusqu’a avoir
affiché n valeurs (afficher soulageant le code des quelques lignes nécessaires a la création d’'une liste) :

e on détermine le plus petit élément entre les trois tétes de files, noté %, et on I'affiche.

e on retire & des files ou il est présent : & peut en effet étre la téte de plusieurs files.
e on enfile sur la file f5 I'entier 2k, sur f3 'entier 3% et sur f5 I'entier 5.

Cet algorithme repose sur le fait que tout nombre de Hamming est le produit par 2,3 ou 5 d’'un autre nombre de
Hamming plus petit.

Pour I'implémentation on utilisera le module Queue de Ocaml, qui propose une implémentation mutable de file. Les
primitives ont les noms suivants (en anglais), le type 'a t désigne une file :

B Queue.create : unit -> 'a Queue.t qui crée une file vide

B Queue.is_empty : 'a Queue.t -> bool qui teste si une file est vide

® Queue.push : 'a -> 'a Queue.t -> unit qui ajoute un élément
® Queue.pop : 'a Queue.t -> 'a qui retire et renvoie 'élément le plus ancien
® Queue.peek : 'a Queue.t -> 'a quirenvoie sans retirer 'élément le plus ancien

Les fonctions peek et pop levent I’'exception Empty si la file est vide.

3. Traduire I'algorithme en Ocaml.

4. (*) L'inconvénient de la démarche précédente est que le méme nombre peut se retrouver dans plusieurs des
trois files. Modifier votre fonction pour que cela ne soit plus le cas.

MP2I - 2025/2026 Informatique - TD n°11 - Piles et files 2/2

Exercice 3 Permutations et piles

Une permutation de [|1, n|] est une maniére de réarranger les entiers de 1 & n. Par exemple pour n =5,(124 5 3)
est une permutation. (1 2 3 4 5) en est une aussi.

on peut aussi le voir comme les 5-uplets dont les éléments sont exactement ceux de [|1, n|], sans répétitions.
On dit qu'une permutation (aias...a,) de [|1,n|] peut étre engendrée par une pile lorsqu’il est possible, a partir
de la permutation (12...n) et d’'une pile (initialement vide), d’afficher la séquence de sortie (aias...a,) en utilisant
uniquement les opérations suivantes :

m empiler I'élément suivant dans la permutation d’entrée.

m dépiler un élément de la pile et 'afficher

Par exemple, si E et D désignent respectivement les deux opérations permises, la permutation (231) est engendrée
par la suite d’opérations EEDEDD.

1. Parmi les permutations suivantes, lesquelles peuvent étre engendrées par une pile ?

(312), (3421), (4537216), (35768492101)

2. Montrer que sil existe un triplet (i, 7, k) € [|1,n|]® tel que i < j < % et a; < ap < a;, alors la permutation
(aiasg...a,) ne peut pas étre engendrée par une pile.

Pour I'implémentation on utilisera le module Stack de Ocaml, qui propose une implémentation mutable de file. Les
primitives ont les noms suivants (en anglais), le type 'a t désigne une file :
m Stack.create : unit -> 'a t qui crée une file vide

m Stack.is_empty : 'a t -> bool qui teste si une file est vide

m Stack.push : 'a -> 'a t -> unit qui ajoute un élément
m Stack.pop : 'a t -> 'a qui retire et renvoie I’élément le plus neuf
m Stack.top : 'a t -> 'a quirenvoie sans retirer ’élément le plus neuf

3. Ecrire une fonction Caml est_engendrable : int list -> bool déterminant si une permutation peut étre en-
gendrée par une pile. Dans le cas d’une réponse positive, la fonction affichera la suite d’opérations permettant
de la produire. Les permutations seront représentées par le type int list.

4. Montrer enfin que toute permutation peut étre engendrée a I'aide de deux piles, et rédiger la fonction Caml
correspondante.

